Previous Page 6

Displaying 101 – 110 of 110

Showing per page

Arithmetic of non-principal orders in algebraic number fields

Andreas Philipp (2010)

Actes des rencontres du CIRM

Let R be an order in an algebraic number field. If R is a principal order, then many explicit results on its arithmetic are available. Among others, R is half-factorial if and only if the class group of R has at most two elements. Much less is known for non-principal orders. Using a new semigroup theoretical approach, we study half-factoriality and further arithmetical properties for non-principal orders in algebraic number fields.

Atomicity and the fixed divisor in certain pullback constructions

Jason Greene Boynton (2012)

Colloquium Mathematicae

Let D be an integral domain with field of fractions K. In this article, we use a certain pullback construction in the spirit of Int(E,D) that furnishes many examples of domains between D[x] and K[x] in which there are elements that do not admit a finite factorization into irreducible elements. We also define the notion of a fixed divisor for this pullback construction to characterize all of its irreducible elements and those nonzero nonunits that do admit a finite factorization into irreducibles....

Currently displaying 101 – 110 of 110

Previous Page 6