Displaying 121 – 140 of 391

Showing per page

Essential dimension of moduli of curves and other algebraic stacks

Patrick Brosnan, Zinovy Reichstein, Angelo Vistoli (2011)

Journal of the European Mathematical Society

In this paper we consider questions of the following type. Let k be a base field and K / k be a field extension. Given a geometric object X over a field K (e.g. a smooth curve of genus g ), what is the least transcendence degree of a field of definition of X over the base field k ? In other words, how many independent parameters are needed to define X ? To study these questions we introduce a notion of essential dimension for an algebraic stack. Using the resulting theory, we give a complete answer to...

Explicit cogenerators for the homotopy category of projective modules over a ring

Amnon Neeman (2011)

Annales scientifiques de l'École Normale Supérieure

Let R be a ring. In two previous articles [12, 14] we studied the homotopy category 𝐊 ( R - Proj ) of projective R -modules. We produced a set of generators for this category, proved that the category is 1 -compactly generated for any ring R , and showed that it need not always be compactly generated, but is for sufficiently nice R . We furthermore analyzed the inclusion j ! : 𝐊 ( R - Proj ) 𝐊 ( R - Flat ) and the orthogonal subcategory 𝒮 = 𝐊 ( R - Proj ) . And we even showed that the inclusion 𝒮 𝐊 ( R - Flat ) has a right adjoint; this forces some natural map to be an equivalence...

Exposé on a conjecture of Tougeron

Joseph Becker (1977)

Annales de l'institut Fourier

An algebra homomorphism of the locatized affine rings of an algebraic variety is continuous in the Krull topology of the respective local rings. It is not necessarily open or closed in the Krull topology. However, we show that the induced map on the associated analytic local rings is also open and closed in the Krull topology. To do this we prove a conjecture of Tougeron which states that if η is an analytic curve on an analytic variety V and f is a formal power series which is convergent when restricted...

Finiteness results for Abelian tree models

Jan Draisma, Rob H. Eggermont (2015)

Journal of the European Mathematical Society

Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant§ refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the Zariski closures of these models are defined by polynomial equations of bounded degree, independent of the tree. Moreover, we show that there exists a polynomial-time membership test for that Zariski closure....

Currently displaying 121 – 140 of 391