A Cancellation Theorem for Projective Modules in the Metastable Range.
We compute the essential dimension of the functors Forms and Hypersurf of equivalence classes of homogeneous polynomials in variables and hypersurfaces in , respectively, over any base field of characteristic . Here two polynomials (or hypersurfaces) over are considered equivalent if they are related by a linear change of coordinates with coefficients in . Our proof is based on a new Genericity Theorem for algebraic stacks, which is of independent interest. As another application of the...
Given a smooth proper dg algebra , a perfect dg -module and an endomorphism of , we define the Hochschild class of the pair with values in the Hochschild homology of the algebra . Our main result is a Riemann-Roch type formula involving the convolution of two such Hochschild classes.