Indecomposable projective modules on affine domains
We show that for a holomorphic foliation with singularities in a projective variety such that every leaf is quasiprojective, the set of rational functions that are constant on the leaves form a field whose transcendence degree equals the codimension of the foliation.
Nous généralisons la théorie de l’intégration motivique au cadre des schémas formels. Nous définissons et étudions l’anneau booléen des ensembles mesurables, la mesure motivique, l’intégrale motivique et nous démontrons un théorème de changement de variables pour cette intégrale.
We collect certain useful lemmas concerning the characteristic map, -invariant sets of matrices, and the relative codimension. We provide a characterization of rank varieties in terms of the characteristic map as well as some necessary and some sufficient conditions for linear subspaces to allow the dominant restriction of the characteristic map.