-тождества и -многообразия
There has been several attempts to generalize commutative algebraic geometry to the noncommutative situation. Localizations with good properties rarely exist for noncommutative algebras, and this makes a direct generalization difficult. Our point of view, following Laudal, is that the points of the noncommutative geometry should be represented as simple modules, and that noncommutative deformations should be used to obtain a suitable localization in the noncommutative situation. Let A be an algebra...
We prove the existence of global minimal models for endomorphisms of projective space defined over the field of fractions of a principal ideal domain.