Previous Page 2

Displaying 21 – 30 of 30

Showing per page

Local monomialization of transcendental extensions

Steven Dale CUTKOSKY (2005)

Annales de l’institut Fourier

Suppose that R S are regular local rings which are essentially of finite type over a field k of characteristic zero. If V is a valuation ring of the quotient field K of S which dominates S , then we show that there are sequences of monoidal transforms (blow ups of regular primes) R R 1 and S S 1 along V such that R 1 S 1 is a monomial mapping. It follows that a morphism of nonsingular varieties can be made to be a monomial mapping along a valuation, after blow ups of nonsingular subvarieties.

Local volumes of Cartier divisors over normal algebraic varieties

Mihai Fulger (2013)

Annales de l’institut Fourier

In this paper we study a notion of local volume for Cartier divisors on arbitrary blow-ups of normal complex algebraic varieties of dimension greater than one, with a distinguished point. We apply this to study an invariant for normal isolated singularities, generalizing a volume defined by J. Wahl for surfaces. We also compare this generalization to a different one arising in recent work of T. de Fernex, S. Boucksom, and C. Favre.

Loop groups, elliptic singularities and principal bundles over elliptic curves

Stefan Helmke, Peter Slodowy (2003)

Banach Center Publications

There is a well known relation between simple algebraic groups and simple singularities, cf. [5], [28]. The simple singularities appear as the generic singularity in codimension two of the unipotent variety of simple algebraic groups. Furthermore, the semi-universal deformation and the simultaneous resolution of the singularity can be constructed in terms of the algebraic group. The aim of these notes is to extend this kind of relation to loop groups and simple elliptic singularities. It is the...

Currently displaying 21 – 30 of 30

Previous Page 2