Picard groups of Deligne-Lusztig varieties -- with a view toward higher codimensions.
If denotes the variety of irreducible plane curves of degree with exactly nodes as singularities, Diaz and Harris (1986) have conjectured that is a torsion group. In this note we study rational equivalence on some families of singular plane curves and we prove, in particular, that is a finite group, so that the conjecture holds for . Actually the order of is , the group being cyclic if is odd and the product of and a cyclic group of order if is even.
For a smooth complex projective variety, the rank of the Néron-Severi group is bounded by the Hodge number . Varieties with have interesting properties, but are rather sparse, particularly in dimension . We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.
Nous donnons une démonstration du fait que le groupe des classes d’un schéma irréductible de type fini sur est de type fini. Cette preuve ne repose pas sur le théorème de Mordell-Weil-Néron, mais plutôt sur le théorème de Mordell-Weil classique, le théorème de Néron-Severi et les théorèmes de Hironaka et de Jong sur la résolution des singularités. Nous en déduisons quelques corollaires, parmi lesquels le théorème de Mordell-Weil-Néron lui-même.