Page 1

Displaying 1 – 15 of 15

Showing per page

A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula

Kai Köhler, Damien Roessler (2002)

Annales de l’institut Fourier

This is the second of a series of papers dealing with an analog in Arakelov geometry of the holomorphic Lefschetz fixed point formula. We use the main result of the first paper to prove a residue formula "à la Bott" for arithmetic characteristic classes living on arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut- Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.

A Riemann-Roch theorem for dg algebras

François Petit (2013)

Bulletin de la Société Mathématique de France

Given a smooth proper dg algebra A , a perfect dg A -module M and an endomorphism f of M , we define the Hochschild class of the pair ( M , f ) with values in the Hochschild homology of the algebra A . Our main result is a Riemann-Roch type formula involving the convolution of two such Hochschild classes.

Currently displaying 1 – 15 of 15

Page 1