Nilpotent connections and the monodromy theorem : applications of a result of Turrittin
Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.
In this article we further the study of noncommutative numerical motives, initiated in [30, 31]. By exploring the change-of-coefficients mechanism, we start by improving some of the main results of [30]. Then, making use of the notion of Schur-finiteness, we prove that the category NNum of noncommutative numerical motives is (neutral) super-Tannakian. As in the commutative world, NNum is not Tannakian. In order to solve this problem we promote periodic cyclic homology to a well-defined symmetric...
Let X be a finite CW complex, and ρ: π 1(X) → GL(l, ℂ) a representation. Any cohomology class α ∈ H 1(X, ℂ) gives rise to a deformation γ t of ρ defined by γ t (g) = ρ(g) exp(t〈α, g〉). We show that the cohomology of X with local coefficients γ gen corresponding to the generic point of the curve γ is computable from a spectral sequence starting from H*(X, ρ). We compute the differentials of the spectral sequence in terms of the Massey products and show that the spectral sequence degenerates in case...