Nilpotent connections and the monodromy theorem : applications of a result of Turrittin
Page 1
Nicholas M. Katz (1970)
Publications Mathématiques de l'IHÉS
A. Ogus, V. Vologodsky (2007)
Publications Mathématiques de l'IHÉS
Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.
Matilde Marcolli, Gonçalo Tabuada (2016)
Journal of the European Mathematical Society
In this article we further the study of noncommutative numerical motives, initiated in [30, 31]. By exploring the change-of-coefficients mechanism, we start by improving some of the main results of [30]. Then, making use of the notion of Schur-finiteness, we prove that the category NNum of noncommutative numerical motives is (neutral) super-Tannakian. As in the commutative world, NNum is not Tannakian. In order to solve this problem we promote periodic cyclic homology to a well-defined symmetric...
Toshitake Kohno, Andrei Pajitnov (2014)
Open Mathematics
Let X be a finite CW complex, and ρ: π 1(X) → GL(l, ℂ) a representation. Any cohomology class α ∈ H 1(X, ℂ) gives rise to a deformation γ t of ρ defined by γ t (g) = ρ(g) exp(t〈α, g〉). We show that the cohomology of X with local coefficients γ gen corresponding to the generic point of the curve γ is computable from a spectral sequence starting from H*(X, ρ). We compute the differentials of the spectral sequence in terms of the Massey products and show that the spectral sequence degenerates in case...
Page 1