On adelic Chern forms and the Bott residue formula
Given a germ of holomorphic function on , we study the condition: “the ideal is generated by operators of order1”. We obtain here full characterizations in the particular cases of Koszul-free germs and unreduced germs of plane curves. Moreover, we prove that this condition holds for a special type of hyperplane arrangements. These results allow us to link this condition to the comparison of de Rham complexes associated with .
The goal of this work is to construct, for a smooth variety over a perfect field k of finite characteristic , an overconvergent de Rham-Witt complex as a suitable subcomplex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in , is a complex of étale sheaves and a differential graded algebra over the ring of overconvergent Witt-vectors. If is affine one proves that there is an isomorphism between Monsky-Washnitzer cohomology and (rational) overconvergent...