Displaying 81 – 100 of 131

Showing per page

Quotients jacobiens d'applications polynomiales

Enrique Artal Bartolo, Philippe Cassou-Noguès, Hélène Maugendre (2003)

Annales de l’institut Fourier

Soit φ : = ( f , g ) : 2 2 f et g sont des applications polynomiales. Nous établissons le lien qui existe entre le polygone de Newton de la courbe réunion du discriminant et du lieu de non-propreté de φ et la topologie des entrelacs à l’infini des courbes affines f - 1 ( 0 ) et g - 1 ( 0 ) . Nous en déduisons alors des conséquences liées à la conjecture du jacobien.

Some topological conditions for projective algebraic manifolds with degenerate dual varieties: connections with 𝐏 -bundles

Antonio Lanteri, Daniele Struppa (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si illustrano alcune relazioni tra le varietà proiettive complesse con duale degenere, le varietà la cui topologia si riflette in quella della sezione iperpiana in misura maggiore dell'ordinario e le varietà fibrate in spazi lineari su di una curva.

Sur le nombre de Łojasiewicz à l'infini d'un polynôme

Pierrette Cassou-Noguès, Ha Huy Vui (1995)

Annales Polonici Mathematici

Résumé. Soit f un polynôme à deux indéterminées. On appelle nombre de Łojasiewicz à l'infini de f le nombre de Łojasiewicz à l'infini de son application gradient. Dans cet article nous montrons tout d'abord que l'on peut calculer le nombre de Łojasiewicz d'un polynôme à partir des diagrammes de Eisenbud et Neumann de toutes les courbes f(x,y) = t. Ensuite nous montrons que l'on peut définir un nombre de Łojasiewicz intrinsèque en prenant le maximum des nombres de Łojasiewicz de f ∘ ϕ si f est bon...

Currently displaying 81 – 100 of 131