The search session has expired. Please query the service again.
The rational solutions with as denominators powers of to the elliptic diophantine equation are determined. An idea of Yuri Bilu is applied, which avoids Thue and Thue-Mahler equations, and deduces four-term (-) unit equations with special properties, that are solved by linear forms in real and -adic logarithms.
This article concerns the problem of solving diophantine equations in rational numbers. It traces the way in which the 19th century broke from the centuries-old tradition of the purely algebraic treatment of this problem. Special attention is paid to Sylvester’s work “On Certain Ternary Cubic-Form Equations” (1879–1880), in which the algebraico-geometrical approach was applied to the study of an indeterminate equation of third degree.
We perform descent calculations for the families of elliptic curves over with
a rational point of order or 7. These calculations give an estimate for the Mordell-Weil rank which we relate to the parity conjecture. We exhibit explicit elements of the Tate-Shafarevich group of order 5 and 7, and show that the 5-torsion of the Tate-Shafarevich group of an elliptic curve over may become arbitrarily large.
Currently displaying 1 –
20 of
32