Density of rational points on an algebraic group. (Densité des points rationnels sur un groupe algébrique.)
The search session has expired. Please query the service again.
Page 1
Waldschmidt, Michel (1994)
Experimental Mathematics
Waldschmidt, Michel (1995)
Experimental Mathematics
Ritabrata Munshi (2009)
Journal de Théorie des Nombres de Bordeaux
We obtain upper bound for the density of rational points on the cyclic covers of . As our estimate tends to the conjectural bound of Serre.
Ritabrata Munshi (2007)
Acta Arithmetica
Ritabrata Munshi (2008)
Acta Arithmetica
Ronald van Luijk (2012)
Acta Arithmetica
Jürgen Wolfart, Gisbert Wüstholz (1985/1986)
Mathematische Annalen
Markus A. REICHERT (1983/1984)
Seminaire de Théorie des Nombres de Bordeaux
S. Kotov (1979)
Acta Arithmetica
Michael Nakamaye (1999)
Journal de théorie des nombres de Bordeaux
We present an overview of recent advances in diophantine approximation. Beginning with Roth's theorem, we discuss the Mordell conjecture and then pass on to recent higher dimensional results due to Faltings-Wustholz and to Faltings respectively.
Kenneth A. Ribet (1976)
Compositio Mathematica
Michael McQuillan (1995)
Inventiones mathematicae
J.-L. Colliot-Thélène, A. N. Skorobogatov, Sir Peter Swinnerton-Dyer (1997)
Acta Arithmetica
Harald Niederreiter, Chaoping Xing (1997)
Acta Arithmetica
Michael Nakamaye (1995)
Inventiones mathematicae
Page 1