Basepoint freeness for nef and big line bundles in positive characteristic.
Soient une variété abélienne sur un corps de nombres et son groupe de Mumford–Tate. Soit une valuation de et pour tout nombre premier tel que , soit l’automorphisme de Frobenius (géométrique) de la cohomologie étale -adique de . On montre que si a une bonne réduction ordinaire en , alors il existe tel que, pour tout , soit conjugué à dans . On montre un résultat analogue pour le frobenius de la cohomologie cristalline de la réduction de modulo .