Idempotent relations and factors of Jacobians.
Let be a field of characteristic , a proper, smooth, geometrically connected curve over , and 0 and two -rational points on . We show that any representation of the local Galois group at extends to a representation of the fundamental group of which is tamely ramified at 0, provided either that is separately closed or that is . In the latter case, we show there exists a unique such extension, called “canonical”, with the property that the image of the geometric fundamental group...
A compact Riemann surface X of genus g≥2 which admits a cyclic group of automorphisms C q of prime order q such that X/C q has genus 0 is called a cyclic q-gonal surface. If a q-gonal surface X is also p-gonal for some prime p≠q, then X is called a multiple prime surface. In this paper, we classify all multiple prime surfaces. A consequence of this classification is a proof of the fact that a cyclic q-gonal surface can be cyclic p-gonal for at most one other prime p.
We show that the Néron–Severi group of the Prym variety for a degree three unramified Galois covering of a hyperelliptic Riemann surface has a distinguished subgroup of rank three. For the general hyperelliptic curve, the algebra of Hodge cycles on the Prym variety is generated by this group of rank three.