Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication.
In this note we extend the computations described in [4] by computing the analytic order of the Tate-Shafarevich group III for all the curves in each isogeny class ; in [4] we considered the strong Weil curve only. While no new methods are involved here, the results have some interesting features suggesting ways in which strong Weil curves may be distinguished from other curves in their isogeny class.
We show that the dimension of the derived category of an elliptic curve or a tubular weighted projective line is one. We give explicit generators realizing this number, and show that they are in a certain sense minimal.
In this article we show that the Bounded Height Conjecture is optimal in the sense that, if is an irreducible subvariety with empty deprived set in a power of an elliptic curve, then every open subset of does not have bounded height. The Bounded Height Conjecture is known to hold. We also present some examples and remarks.
Let C be an elliptic curve and E, F polystable vector bundles on C such that no two among the indecomposable factors of E + F are isomorphic. Here we give a complete classification of such pairs (E,F) such that E is a subbundle of F.
We describe the tautological ring of the moduli space of stable -pointed curves of genus one of compact type. It is proven that it is a Gorenstein algebra.
We determine explicitly the structure of the torsion group over the maximal abelian extension of and over the maximal -cyclotomic extensions of for the family of rational elliptic curves given by , where is an integer.