Rang moyen de familles de courbes elliptiques et lois de Sato-Tate.
We construct a family of elliptic curves with six parameters, arising from a system of Diophantine equations, whose rank is at least five. To do so, we use the Brahmagupta formula for the area of cyclic quadrilaterals (p³,q³,r³,s³) not necessarily representing genuine geometric objects. It turns out that, as parameters of the curves, the integers p,q,r,s along with the extra integers u,v satisfy u⁶+v⁶+p⁶+q⁶ = 2(r⁶+s⁶), uv = pq, which, by previous work, has infinitely many integer solutions.
We report on a large-scale project to investigate the ranks of elliptic curves in a quadratic twist family, focussing on the congruent number curve. Our methods to exclude candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer tests, the use of the Guinand-Weil explicit formula, and even 3-descent in a couple of cases. We find that rank 6 quadratic twists are reasonably common (though still quite difficult to find), while rank 7 twists seem much more rare. We also describe our inability to find...
This article concerns the problem of solving diophantine equations in rational numbers. It traces the way in which the 19th century broke from the centuries-old tradition of the purely algebraic treatment of this problem. Special attention is paid to Sylvester’s work “On Certain Ternary Cubic-Form Equations” (1879–1880), in which the algebraico-geometrical approach was applied to the study of an indeterminate equation of third degree.