Abelian varieties associated to certain K3 surfaces
The Generalized Elliptic Curves are pairs , where is a family of triples of “points” from the set characterized by equalities of the form , where the law makes into a totally symmetric quasigroup. Isotopic loops arise by setting . When , identically is an entropic and is an abelian group. Similarly, a terentropic may be characterized by and is then a Commutative Moufang Loop . If in addition , we have Hall and is an exponent
We prove that for any , the curvein is a genus curve violating the Hasse principle. An explicit Weierstrass model for its jacobian is given. The Shafarevich-Tate group of each contains a subgroup isomorphic to .
In a recent paper we proved that there are at most finitely many complex numbers such that the points and are both torsion on the Legendre elliptic curve defined by . In a sequel we gave a generalization to any two points with coordinates algebraic over the field and even over . Here we reconsider the special case and with complex numbers and .
Le but de cet article est de proposer une nouvelle méthode pour des études dans le cadre de la théorie des “dessins d’enfants” de A. Grothendieck de certaines questions concernant l’action du groupe de Galois absolu sur l’ensemble des arbres planaires.On définit l’application qui associe à chaque arbre planaire à arêtes, une courbe hyperelliptique avec un point de -division. Cette construction permet d’établir un lien entre la théorie de la torsion des courbes hyperelliptiques et celle des “dessins...