On the Shafarevich and Tate conjectures for hyperkähler varieties.
We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural...
In this paper we determine the greatest degree of a rational projectively Cohen-Macaulay (p.C.M.) surface V in PN and we study the surfaces which attain such maximum degree.
Let be a real smooth projective 3-fold fibred by rational curves such that is orientable. J. Kollár proved that a connected component of is essentially either Seifert fibred or a connected sum of lens spaces. Answering three questions of Kollár, we give sharp estimates on the number and the multiplicities of the Seifert fibres (resp. the number and the torsions of the lens spaces) when is a geometrically rational surface. When is Seifert fibred over a base orbifold , our result generalizes...
2000 Mathematics Subject Classification: 14C20, 14E25, 14J26.The famous Nagata Conjecture predicts the lowest degree of a plane curve passing with prescribed multiplicities through given points in general position. We explain how this conjecture extends naturally via multiple point Seshadri constants to ample line bundles on arbitrary surfaces. We show that if there exist curves of unpredictable low degree, then they must have equal multiplicities in all but possibly one of the given points. We...