Displaying 61 – 80 of 100

Showing per page

Polytopes, quasi-minuscule representations and rational surfaces

Jae-Hyouk Lee, Mang Xu, Jiajin Zhang (2017)

Czechoslovak Mathematical Journal

We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural...

Real singular Del Pezzo surfaces and 3-folds fibred by rational curves, II

Fabrizio Catanese, Frédéric Mangolte (2009)

Annales scientifiques de l'École Normale Supérieure

Let W X be a real smooth projective 3-fold fibred by rational curves such that W ( ) is orientable. J. Kollár proved that a connected component N of W ( ) is essentially either Seifert fibred or a connected sum of lens spaces. Answering three questions of Kollár, we give sharp estimates on the number and the multiplicities of the Seifert fibres (resp. the number and the torsions of the lens spaces) when X is a geometrically rational surface. When N is Seifert fibred over a base orbifold F , our result generalizes...

Remarks on the Nagata Conjecture

Strycharz-Szemberg, Beata, Szemberg, Tomasz (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 14C20, 14E25, 14J26.The famous Nagata Conjecture predicts the lowest degree of a plane curve passing with prescribed multiplicities through given points in general position. We explain how this conjecture extends naturally via multiple point Seshadri constants to ample line bundles on arbitrary surfaces. We show that if there exist curves of unpredictable low degree, then they must have equal multiplicities in all but possibly one of the given points. We...

Currently displaying 61 – 80 of 100