A bound for the degree of smooth surfaces in not of general type
In this paper we classify the algebraic surfaces on C with KS2=4, pg=3 and canonical map of degree d=3. By our result and the previous one of Horikawa (1979) we obtain the complete determination of surfaces with K2=4 and pg=3.
In 1985 Xiao Gang proved that the bicanonical surface of a complex surface S of general type with p2(S) > 2 is not composed of a pencil. In this note a new proof of this theorem is presented.
We prove that a numerical Godeaux surface cannot have an automorphism of order three.