Calabi-Yau manifolds and a conjecture of Kobayashi.
In this paper we give a method for calculating the rank of a general elliptic curve over the field of rational functions in two variables. We reduce this problem to calculating the cohomology of a singular hypersurface in a weighted projective -space. We then give a method for calculating the cohomology of a certain class of singular hypersurfaces, extending work of Dimca for the isolated singularity case.
Let 𝓐₂(n) = Γ₂(n)∖𝔖₂ be the quotient of Siegel's space of degree 2 by the principal congruence subgroup of level n in Sp(4,ℤ). This is the moduli space of principally polarized abelian surfaces with a level n structure. Let 𝓐₂(n)* denote the Igusa compactification of this space, and ∂𝓐₂(n)* = 𝓐₂(n)* - 𝓐₂(n) its "boundary". This is a divisor with normal crossings. The main result of this paper is the determination of H(∂𝓐₂(n)*) as a module over the finite group Γ₂(1)/Γ₂(n). As an application...
In this appendix, we observe that Iitaka’s conjecture fits in the more general context of special manifolds, in which the relevant statements follow from the particular cases of projective and simple manifolds.
Una contrazione su una varietà proiettiva liscia è data da una mappa propria, suriettiva e a fibre connesse in una varietà irriducibile normale . La contrazione si dice di Fano-Mori se inoltre è -ampio. Nel lavoro, naturale seguito e completamento delle ricerche introdotte in [A-W3], si studiano diversi aspetti delle contrazioni di Fano-Mori attraverso esempi (capitolo 1) e teoremi di struttura (capitoli 3 e 4). Si discutono anche alcune applicazioni allo studio di morfismi birazionali propri...