Lagrangian fibrations on generalized Kummer varieties
We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface of Picard number one we find the following: The Kummer variety is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if is a perfect square. And this is the case if and only if carries a divisor with vanishing Beauville-Bogomolov square.