The search session has expired. Please query the service again.
We prove a multiple-points higher-jets nonvanishing theorem by the use of local Seshadri constants. Applications are given to effectivity problems such as constructing rational and birational maps into Grassmannians, and the global generation of vector bundles.
Complex projective elliptic surfaces endowed with a numerically effective line bundle of arithmetic genus two are studied and partially classified. A key role is played by elliptic quasi-bundles, where some ideas developed by Serrano in order to study ample line bundles apply to this more general situation.
Given a complex manifold M equipped with an action of a group G, and a holomorphic principal H–bundle EH on M, we introduce the notion of a connection on EH along the action of G, which is called a G–connection. We show some relationship between the condition that EH admits a G–equivariant structure and the condition that EH admits a (flat) G–connection. The cases of bundles on homogeneous spaces and smooth toric varieties are discussed.
Currently displaying 1 –
6 of
6