A description of Chern classes of semistable sheaves on a quadric surface.
Let be a globally generated ample vector bundle of rank on a complex projective smooth surface . By extending a recent result by A. Noma, we classify pairs as above satisfying .
We prove that a certain Brill-Noether locus over a non-hyperelliptic curve C of genus 4, is isomorphic to the Donagi-Izadi cubic threefold in the case when the pencils of the two trigonal line bundles of C coincide.
In this paper we show that on a general hypersurface of degree r = 3,4,5,6 in P5 a rank 2 vector bundle ε splits if and only if h1ε(n) = h2ε(n) = 0 for all n ∈ Z. Similar results for r = 1,2 were obtained in [15], [16] and [2].
We show that the Beauville’s integrable system on a ten dimensional moduli space of sheaves on a K3 surface constructed via a moduli space of stable sheaves on cubic threefolds is algebraically completely integrable, using O’Grady’s construction of a symplectic resolution of the moduli space of sheaves on a K3.