On the number of singular ponts of a real projective hypersurface.
Zbigniew Szafraniec (1991)
Mathematische Annalen
Kazuhiro Konno (1991)
Compositio Mathematica
David A. Cox, Mark L. Green (1990)
Compositio Mathematica
Francesco Amoroso (1990)
Acta Arithmetica
David Harari (1995)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Carlo Madonna (2000)
Revista Matemática Complutense
In this paper all non-splitting rank-two vector bundles E without intermediate cohomology on a general quartic hypersurface X in P4 are classified. In particular, the existence of some curves on a general quartic hypersurface is proved.
Rahul Pandharipande (1997/1998)
Séminaire Bourbaki
J. Bochnak, W. Kucharz (1995)
Mathematische Annalen
Johannes Huisman (2004)
Revista Matemática Complutense
Let X be a real cubic hypersurface in Pn. Let C be the pseudo-hyperplane of X, i.e., C is the irreducible global real analytic branch of the real analytic variety X(R) such that the homology class [C] is nonzero in Hn-1(Pn(R),Z/2Z). Let L be the set of real linear subspaces L of Pn of dimension n - 2 contained in X such that L(R) ⊆ C. We show that, under certain conditions on X, there is a group law on the set L. It is determined by L + L' + L = 0 in L if and only if there is a real hyperplane H...
Eric Westenberger (2005)
Revista Matemática Complutense
In this paper we present constructions of real hypersurfaces with many simple singularities and deduce an asymptotical optimal existence result for hypersurfaces corresponding to T-smooth germs of the equisingular stratum. We proceed along the lines of Shustin-Westenberge (2004) where analogous results were shown for the complex case.
Xiang Wu (1994)
Mathematische Annalen
Maximiliano Leyton-Alvarez (2011)
Annales de la faculté des sciences de Toulouse Mathématiques
Le problème des arcs de Nash pour les singularités normales de surfaces affirme qu’il y aurait autant de familles d’arcs sur un germe de surface singulier que de diviseurs essentiels sur . Il est connu que ce problème se réduit à étudier les singularités quasi-rationnelles. L’objet de cet article est de répondre positivement au problème de Nash pour une famille d’hypersurfaces quasi-rationnelles non rationnelles. On applique la même méthode pour répondre positivement à ce problème dans les cas...
Gary R. Jensen, Emilio Musso (1994)
Annales scientifiques de l'École Normale Supérieure
Shulim Kaliman (1993)
Mathematische Zeitschrift
M. R. Gonzalez-Dorrego (2016)
Banach Center Publications
Let k be an algebraically closed field, char k = 0. Let C be an irreducible nonsingular curve such that rC = S ∩ F, r ∈ ℕ, where S and F are two surfaces and all the singularities of F are of the form , s ∈ ℕ. We prove that C can never pass through such kind of singularities of a surface, unless r = 3a, a ∈ ℕ. We study multiplicity-r structures on varieties r ∈ ℕ. Let Z be a reduced irreducible nonsingular (n-1)-dimensional variety such that rZ = X ∩ F, where X is a normal n-fold, F is a (N-1)-fold...
Koji Cho, Eiichi Sato (1994)
Mathematische Zeitschrift
Claire Voisin (1990)
Compositio Mathematica
Nicole Mestrano (1997)
Journal für die reine und angewandte Mathematik
Claire Voisin (1992)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Emilia Mezzetti (1992)
Journal für die reine und angewandte Mathematik