Schottky uniformization theory on Riemann surfaces and Mumford curves of infinite genus.
We consider the linear system of second order theta functions over the Jacobian of a non-hyperelliptic curve . A result by J.Fay says that a divisor contains the origin with multiplicity if and only if contains the surface . In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing with multiplicity , divisors containing the fourfold , and divisors singular along , using the third exterior...
We study the codimension two locus in consisting of principally polarized abelian varieties whose theta divisor has a singularity that is not an ordinary double point. We compute the class for every . For , this turns out to be the locus of Jacobians with a vanishing theta-null. For , via the Prym map we show that has two components, both unirational, which we describe completely. We then determine the slope of the effective cone of and show that the component of the Andreotti-Mayer...
À partir des formes de Jacobi , on construit une somme de Dedekind elliptique. On obtient ainsi un analogue elliptique aux sommes multiples de Dedekind construites à partir des fonctions cotangentes, étudiées par D. Zagier. En outre, on établit une loi de réciprocité satisfaite par ces nouvelles sommes. Par une procédure de limite, on peut retrouver la loi de réciprocité remplie par les sommes multiples de Dedekind classiques. D’autre part, en les spécialisant en des paramètres de points de 2- division,...