On the prime-to- part of the groups of connected components of Néron models
We study Le Potier's strange duality conjecture for moduli spaces of sheaves over generic abelian surfaces. We prove the isomorphism for abelian surfaces which are products of elliptic curves, when the moduli spaces consist of sheaves of equal ranks and ber degree 1. The birational type of the moduli space of sheaves is also investigated. Generalizations to arbitrary product elliptic surfaces are given.
Stein and Watkins conjectured that for a certain family of elliptic curves E, the X₀(N)-optimal curve and the X₁(N)-optimal curve of the isogeny class 𝓒 containing E of conductor N differ by a 3-isogeny. In this paper, we show that this conjecture is true.
For i = 0,1, let be the -optimal curve of an isogeny class of elliptic curves defined over ℚ of conductor N. Stein and Watkins conjectured that E₀ and E₁ differ by a 5-isogeny if and only if E₀ = X₀(11) and E₁ = X₁(11). In this paper, we show that this conjecture is true if N is square-free and is not divisible by 5. On the other hand, Hadano conjectured that for an elliptic curve E defined over ℚ with a rational point P of order 5, the 5-isogenous curve E’ := E/⟨P⟩ has a rational point of order...