Galois Properties of Torsion Points on Abelian Varieties.
We study the moduli space of principally polarized abelian varieties in positive characteristic. In this paper we determine the Newton polygon of any generic point of each Ekedahl-Oort stratum, by proving Oort’s conjecture on intersections of Newton polygon strata and Ekedahl-Oort strata. This result tells us a combinatorial algorithm determining the optimal upper bound of the Newton polygons of principally polarized abelian varieties with a given isomorphism type of -kernel.
We describe the rigid geometry of the first layer in the tower of coverings of the -adic upper half plane constructed by Drinfeld. Using our results, we describe the stable fiber at p of certain Shimura curves.
Let be a positive integer and a complete characteristic zero discrete valuation ring with maximal ideal , absolute ramification index and perfect residue field of characteristic . In this paper we classify smooth finite dimensional formal -faithful groups over , i.e. groups on which the “multiplication by ” morphism is faithfully flat, in particular -divisible groups. As applications, we prove that -divisible groups over , and the morphisms between them, lift canonically to , and...
Let be a split semisimple linear algebraic group over a field and let be a split maximal torus of . Let be an oriented cohomology (algebraic cobordism, connective -theory, Chow groups, Grothendieck’s , etc.) with formal group law . We construct a ring from and the characters of , that we call a formal group ring, and we define a characteristic ring morphism from this formal group ring to where is the variety of Borel subgroups of . Our main result says that when the torsion index...
Étant donnés un entier et un groupe de Barsotti-Tate tronqué d’échelon et de dimension sur un anneau de valuation d’inégales caractéristiques, nous donnons une borne explicite sur son invariant de Hasse qui implique que sa filtration de Harder-Narasimhan possède un sous-groupe libre de rang . Lorsque nous redémontrons également le théorème d’Abbes-Mokrane ([120]) et de Tian ([164]) par des méthodes locales. On applique cela aux familles -adiques de tels objets et en particulier à certaines...
Ce texte est consacré au système d’Euler de Kato, construit à partir des unités modulaires, et à son image par l’application exponentielle duale (loi de réciprocité explicite de Kato). La présentation que nous en donnons est sensiblement différente de la présentation originelle de Kato.