Displaying 221 – 240 of 396

Showing per page

On induced actions of algebraic groups

Andrzej Bialynicki-Birula (1993)

Annales de l'institut Fourier

In this paper we study the existence problem for products X × G Y in the categories of quasi-projective and algebraic varieties and also in the category of algebraic spaces.

On orbits of the automorphism group on an affine toric variety

Ivan Arzhantsev, Ivan Bazhov (2013)

Open Mathematics

Let X be an affine toric variety. The total coordinates on X provide a canonical presentation X ¯ X of X as a quotient of a vector space X ¯ by a linear action of a quasitorus. We prove that the orbits of the connected component of the automorphism group Aut(X) on X coincide with the Luna strata defined by the canonical quotient presentation.

On quasihomogeneous manifolds – via Brion-Luna-Vust theorem

Marco Andreatta, Jarosław A. Wiśniewski (2003)

Bollettino dell'Unione Matematica Italiana

We consider a smooth projective variety X on which a simple algebraic group G acts with an open orbit. We discuss a theorem of Brion-Luna-Vust in order to relate the action of G with the induced action of G on the normal bundle of a closed orbit of the action. We get effective results in case G = S L n and dim X 2 n - 2 .

On semi-invariants of tilted algebras of type Aₙ

Witold Kraśkiewicz (2001)

Colloquium Mathematicae

We prove that for algebras obtained by tilts from the path algebras of equioriented Dynkin diagrams of type Aₙ, the rings of semi-invariants are polynomial.

On spherical nilpotent orbits and beyond

Dmitri I. Panyushev (1999)

Annales de l'institut Fourier

We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s θ -groups. This yields a description of spherical...

On symmetric semialgebraic sets and orbit spaces

Ludwig Bröcker (1998)

Banach Center Publications

For a symmetric (= invariant under the action of a compact Lie group G) semialgebraic basic set C, described by s polynomial inequalities, we show, that C can also be written by s + 1 G-invariant polynomials. We also describe orbit spaces for the action of G by a number of inequalities only depending on the structure of G.

On the Moment Map of a Multiplicity Free Action

Andrzej Daszkiewicz, Tomasz Przebinda (1996)

Colloquium Mathematicae

The purpose of this note is to show that the Orbit Conjecture of C. Benson, J. Jenkins, R. L. Lipsman and G. Ratcliff [BJLR1] is true. Another proof of that fact has been given by those authors in [BJLR2]. Their proof is based on their earlier results, announced together with the conjecture in [BJLR1]. We follow another path: using a geometric quantization result of Guillemin-Sternberg [G-S] we reduce the conjecture to a similar statement for a projective space, which is a special case of a characterization...

On the motive of a quotient variety.

Sebastián del Baño Rollin, Vicente Navarro Aznar (1998)

Collectanea Mathematica

We show that the motive of the quotient of a scheme by a finite group coincides with the invariant submotive.

Currently displaying 221 – 240 of 396