Fonction zêta associée à la série principale sphérique de certains espaces symétriques
The existence of common zero of a family of polynomials has led to the study of inertial forms, whose homogeneous part of degree 0 constitutes the ideal resultant. The Kozsul and Cech cohomologies groups play a fundamental role in this study. An analogueous of Hurwitz theorem is given, and also, one finds a N. H. McCoy theorem in a particular case of this study.
La théorie de M. Sato et T. Shintani associe à toute forme réelle d’un espace préhomogène irréductible régulier dont le groupe est réductif, une fonction zêta qui vérifie une équation fonctionnelle remarquable. Dans cet article, nous classifions les formes réelles infinitésimales des espaces préhomogènes irréductibles de type parabolique. Cette classification est obtenue en termes de diagrammes de Satake à poids.