Displaying 521 – 540 of 1240

Showing per page

Linear bounds for levels of stable rationality

Fedor Bogomolov, Christian Böhning, Hans-Christian Graf von Bothmer (2012)

Open Mathematics

Let G be one of the groups SLn(ℂ), Sp2n (ℂ), SOm(ℂ), Om(ℂ), or G 2. For a generically free G-representation V, we say that N is a level of stable rationality for V/G if V/G × ℙN is rational. In this paper we improve known bounds for the levels of stable rationality for the quotients V/G. In particular, their growth as functions of the rank of the group is linear for G being one of the classical groups.

Maps of toric varieties in Cox coordinates

Gavin Brown, Jarosław Buczyński (2013)

Fundamenta Mathematicae

The Cox ring provides a coordinate system on a toric variety analogous to the homogeneous coordinate ring of projective space. Rational maps between projective spaces are described using polynomials in the coordinate ring, and we generalise this to toric varieties, providing a unified description of arbitrary rational maps between toric varieties in terms of their Cox coordinates. Introducing formal roots of polynomials is necessary even in the simplest examples.

Maximal compatible splitting and diagonals of Kempf varieties

Niels Lauritzen, Jesper Funch Thomsen (2011)

Annales de l’institut Fourier

Lakshmibai, Mehta and Parameswaran (LMP) introduced the notion of maximal multiplicity vanishing in Frobenius splitting. In this paper we define the algebraic analogue of this concept and construct a Frobenius splitting vanishing with maximal multiplicity on the diagonal of the full flag variety. Our splitting induces a diagonal Frobenius splitting of maximal multiplicity for a special class of smooth Schubert varieties first considered by Kempf. Consequences are Frobenius splitting of tangent bundles,...

Maximal rationally connected fibrations and movable curves

Luis E. Solá Conde, Matei Toma (2009)

Annales de l’institut Fourier

A well known result of Miyaoka asserts that a complex projective manifold is uniruled if its cotangent bundle restricted to a general complete intersection curve is not nef. Using the Harder-Narasimhan filtration of the tangent bundle, it can moreover be shown that the choice of such a curve gives rise to a rationally connected foliation of the manifold. In this note we show that, conversely, a movable curve can be found so that the maximal rationally connected fibration of the manifold may be recovered...

Currently displaying 521 – 540 of 1240