Correction to: "An obstruction to smoothing of Gorenstein surface singularities".
On montre que la réunion générale d’une courbe rationnelle avec des droites dans est de rang maximum.
Soit une variété homogène sous un groupe . Nous étudions les orbites maximales de sous l’action d’un parabolique de . Nous les décomposons en fibrations affines et projectives. Cette description permet de montrer que le schéma de Hilbert des courbes rationnelles lisses de classe fixée est non vide et irréductible.
We associate to every curve on a smooth quadric a polynomial equation that defines it as a divisor; this polynomial is defined through a matrix. In this way we can study several properties of these curves; in particular we can give a geometrical meaning to the rank of the matrix which defines the curve.