Page 1 Next

Displaying 1 – 20 of 46

Showing per page

Chen–Ruan Cohomology of 1 , n and ¯ 1 , n

Nicola Pagani (2013)

Annales de l’institut Fourier

In this work we compute the Chen–Ruan cohomology of the moduli spaces of smooth and stable n -pointed curves of genus 1 . In the first part of the paper we study and describe stack theoretically the twisted sectors of 1 , n and ¯ 1 , n . In the second part, we study the orbifold intersection theory of ¯ 1 , n . We suggest a definition for an orbifold tautological ring in genus 1 , which is a subring of both the Chen–Ruan cohomology and of the stringy Chow ring.

Combinatoire des arbres planaires et arithmétique des courbes hyperelliptiques

Fedor Pakovitch (1998)

Annales de l'institut Fourier

Le but de cet article est de proposer une nouvelle méthode pour des études dans le cadre de la théorie des “dessins d’enfants” de A. Grothendieck de certaines questions concernant l’action du groupe de Galois absolu sur l’ensemble des arbres planaires.On définit l’application qui associe à chaque arbre planaire à n arêtes, une courbe hyperelliptique avec un point de n -division. Cette construction permet d’établir un lien entre la théorie de la torsion des courbes hyperelliptiques et celle des “dessins...

Comparison theorems for Gromov–Witten invariants of smooth pairs and of degenerations

Dan Abramovich, Steffen Marcus, Jonathan Wise (2014)

Annales de l’institut Fourier

We consider four approaches to relative Gromov–Witten theory and Gromov–Witten theory of degenerations: J. Li’s original approach, B. Kim’s logarithmic expansions, Abramovich–Fantechi’s orbifold expansions, and a logarithmic theory without expansions due to Gross–Siebert and Abramovich–Chen. We exhibit morphisms relating these moduli spaces and prove that their virtual fundamental classes are compatible by pushforward through these morphisms. This implies that the Gromov–Witten invariants associated...

Currently displaying 1 – 20 of 46

Page 1 Next