Page 1

Displaying 1 – 13 of 13

Showing per page

2-frieze patterns and the cluster structure of the space of polygons

Sophie Morier-Genoud, Valentin Ovsienko, Serge Tabachnikov (2012)

Annales de l’institut Fourier

We study 2-frieze patterns generalizing that of the classical Coxeter-Conway frieze patterns. The geometric realization of this space is the space of n -gons (in the projective plane and in 3-dimensional vector space) which is a close relative of the moduli space of genus 0 curves with n marked points. We show that the space of 2-frieze patterns is a cluster manifold and study its algebraic and arithmetic properties.

3-dimensional sundials

Enrico Carlini, Maria Catalisano, Anthony Geramita (2011)

Open Mathematics

R. Hartshorne and A. Hirschowitz proved that a generic collection of lines on ℙn, n≥3, has bipolynomial Hilbert function. We extend this result to a specialization of the collection of generic lines, by considering a union of lines and 3-dimensional sundials (i.e., a union of schemes obtained by degenerating pairs of skew lines).

[unknown]

Todor Milanov, Yefeng Shen (0)

Annales de l’institut Fourier

Currently displaying 1 – 13 of 13

Page 1