Displaying 141 – 160 of 471

Showing per page

Felix Klein's paper on real flexes vindicated

Felice Ronga (1998)

Banach Center Publications

In a paper written in 1876 [4], Felix Klein gave a formula relating the number of real flexes of a generic real plane projective curve to the number of real bitangents at non-real points and the degree, which shows in particular that the number of real flexes cannot exceed one third of the total number of flexes. We show that Klein's arguments can be made rigorous using a little of the theory of singularities of maps, justifying in particular his resort to explicit examples.

Finiteness problems on Nash manifolds and Nash sets

José F. Fernando, José Manuel Gamboa, Jesús M. Ruiz (2014)

Journal of the European Mathematical Society

We study here several finiteness problems concerning affine Nash manifolds M and Nash subsets X . Three main results are: (i) A Nash function on a semialgebraic subset Z of M has a Nash extension to an open semialgebraic neighborhood of Z in M , (ii) A Nash set X that has only normal crossings in M can be covered by finitely many open semialgebraic sets U equipped with Nash diffeomorphisms ( u 1 , , u m ) : U m such that U X = { u 1 u r = 0 } , (iii) Every affine Nash manifold with corners N is a closed subset of an affine Nash manifold...

Gale duality for complete intersections

Frédéric Bihan, Frank Sottile (2008)

Annales de l’institut Fourier

We show that every complete intersection defined by Laurent polynomials in an algebraic torus is isomorphic to a complete intersection defined by master functions in the complement of a hyperplane arrangement, and vice versa. We call systems defining such isomorphic schemes Gale dual systems because the exponents of the monomials in the polynomials annihilate the weights of the master functions. We use Gale duality to give a Kouchnirenko theorem for the number of solutions to a system of master...

Generalized polar varieties and an efficient real elimination

Bernd Bank, Marc Giusti, Joos Heintz, Luis M. Pardo (2004)

Kybernetika

Let W be a closed algebraic subvariety of the n -dimensional projective space over the complex or real numbers and suppose that W is non-empty and equidimensional. In this paper we generalize the classic notion of polar variety of W associated with a given linear subvariety of the ambient space of W . As particular instances of this new notion of generalized polar variety we reobtain the classic ones and two new types of polar varieties, called dual and (in case that W is affine) conic. We show that...

Géométrie réelle des dessins d’enfant

Layla Pharamond dit d’Costa (2004)

Journal de Théorie des Nombres de Bordeaux

À tout dessin d’enfant est associé un revêtement ramifié de la droite projective complexe P 1 , non ramifié en dehors de 0, 1 et l’infini. Cet article a pour but de décrire la structure algébrique de l’image réciproque de la droite projective réelle par ce revêtement, en termes de la combinatoire du dessin d’enfant. Sont rappelées en annexe les propriétés de la restriction de Weil et des dessins d’enfants utilisées.

Géométrie réelle des dessins d’enfant : une étude des composantes irréductibles

Layla Pharamond dit d’Costa (2005)

Journal de Théorie des Nombres de Bordeaux

Dans cet article nous nous intéressons aux propriétés des composantes irréductibles associées à la géométrie réelle d’un dessin d’enfant. Plus précisément, nous étudions les composantes irréductibles de la courbe Γ dont l’ensemble des points réels est l’image réciproque de P 1 ( R ) par une fonction de Belyi d’un dessin d’enfant.

Global problems on Nash functions.

Michel Coste, Jesús M. Ruiz, Masahiro Shiota (2004)

Revista Matemática Complutense

This is a survey on the history of and the solutions to the basic global problems on Nash functions, which have been only recently solved, namely: separation, extension, global equations, Artin-Mazur description and idempotency, also noetherianness. We discuss all of them in the various possible contexts, from manifolds over the reals to real spectra of arbitrary commutative rings.

Graded quaternion symbol equivalence of function fields

Przemysław Koprowski (2007)

Czechoslovak Mathematical Journal

We present criteria for a pair of maps to constitute a quaternion-symbol equivalence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed in terms of vanishing of the Clifford invariant. In principle, we prove that a local condition of a quaternion-symbol equivalence can be transcribed from the Brauer group to the Brauer-Wall group.

Gradient horizontal de fonctions polynomiales

Si Tiep Dinh, Krzysztof Kurdyka, Patrice Orro (2009)

Annales de l’institut Fourier

Nous étudions les trajectoires du gradient sous-riemannien (appellé horizontal) de fonctions polynômes. Dans ce cadre l’inégalité de Łojasiewicz n’est pas valide et une trajectoire du gradient horizontal peut être de longueur infinie, et peut même s’accumuler sur une courbe fermée. Nous montrons que ces comportement sont exceptionnels ; et que, pour une fonction générique les trajectoires de son gradient horizontal ont des propriétés similaires au cas du gradient riemannien. Pour obtenir la finitude...

Grauert's theorem for subanalytic open sets in real analytic manifolds

Daniel Barlet, Teresa Monteiro Fernandes (2011)

Studia Mathematica

By an open neighbourhood in ℂⁿ of an open subset Ω of ℝⁿ we mean an open subset Ω' of ℂⁿ such that ℝⁿ ∩ Ω' = Ω. A well known result of H. Grauert implies that any open subset of ℝⁿ admits a fundamental system of Stein open neighbourhoods in ℂⁿ. Another way to state this property is to say that each open subset of ℝⁿ is Stein. We shall prove a similar result in the subanalytic category: every subanalytic open subset in a paracompact real analytic manifold M admits a fundamental system of subanalytic...

Currently displaying 141 – 160 of 471