Displaying 361 – 380 of 941

Showing per page

Invertible commutativity preservers of matrices over max algebra

Seok-Zun Song, Kyung-Tae Kang, Young Bae Jun (2006)

Czechoslovak Mathematical Journal

The max algebra consists of the nonnegative real numbers equipped with two binary operations, maximization and multiplication. We characterize the invertible linear operators that preserve the set of commuting pairs of matrices over a subalgebra of max algebra.

Inverting covariance matrices

Czesław Stępniak (2006)

Discussiones Mathematicae Probability and Statistics

Some useful tools in modelling linear experiments with general multi-way classification of the random effects and some convenient forms of the covariance matrix and its inverse are presented. Moreover, the Sherman-Morrison-Woodbury formula is applied for inverting the covariance matrix in such experiments.

Investigating generalized quaternions with dual-generalized complex numbers

Nurten Gürses, Gülsüm Yeliz Şentürk, Salim Yüce (2023)

Mathematica Bohemica

We aim to introduce generalized quaternions with dual-generalized complex number coefficients for all real values α , β and 𝔭 . Furthermore, the algebraic structures, properties and matrix forms are expressed as generalized quaternions and dual-generalized complex numbers. Finally, based on their matrix representations, the multiplication of these quaternions is restated and numerical examples are given.

Involutions and semiinvolutions

Hiroyuki Ishibashi (2006)

Czechoslovak Mathematical Journal

We define a linear map called a semiinvolution as a generalization of an involution, and show that any nilpotent linear endomorphism is a product of an involution and a semiinvolution. We also give a new proof for Djocović’s theorem on a product of two involutions.

Jacobians of certain transformations of singular matrices

José A. Díaz-García, Ramón Gutiérrez-Jáimez (2009)

Applicationes Mathematicae

In this study various Jacobians of transformations of singular random matrices are found. An alternative proof of Uhlig's first conjecture (Uhlig (1994)) is proposed. Furthermore, we propose various extensions of this conjecture under different singularities. Finally, an application of the theory of singular distributions is discussed.

Jucys-Murphy elements and the unitary Weingarten function

Jonathan I. Novak (2010)

Banach Center Publications

We describe an approach to the unitary Weingarten function based on the JM elements of symmetric group algebras. When combined with previously known properties of the Weingarten function, this gives a surprising connection with the Moebius function of the lattice of noncrossing partitions.

Currently displaying 361 – 380 of 941