Displaying 21 – 40 of 250

Showing per page

CB-degenerations and rigid degenerations of algebras

Adam Hajduk (2006)

Colloquium Mathematicae

The main aim of this note is to prove that if k is an algebraically closed field and a k-algebra A₀ is a CB-degeneration of a finite-dimensional k-algebra A₁, then there exists a factor algebra Ā₀ of A₀ of the same dimension as A₁ such that Ā₀ is a CB-degeneration of A₁. As a consequence, Ā₀ is a rigid degeneration of A₁, provided A₀ is basic.

Cellular covers of cotorsion-free modules

Rüdiger Göbel, José L. Rodríguez, Lutz Strüngmann (2012)

Fundamenta Mathematicae

In this paper we improve recent results dealing with cellular covers of R-modules. Cellular covers (sometimes called colocalizations) come up in the context of homotopical localization of topological spaces. They are related to idempotent cotriples, idempotent comonads or coreflectors in category theory. Recall that a homomorphism of R-modules π: G → H is called a cellular cover over H if π induces an isomorphism π : H o m R ( G , G ) H o m R ( G , H ) , where π⁎(φ) = πφ for each φ H o m R ( G , G ) (where maps are acting on the left). On the one hand,...

Centers in domains with quadratic growth

Agata Smoktunowicz (2005)

Open Mathematics

Let F be a field, and let R be a finitely-generated F-algebra, which is a domain with quadratic growth. It is shown that either the center of R is a finitely-generated F-algebra or R satisfies a polynomial identity (is PI) or else R is algebraic over F. Let r ∈ R be not algebraic over F and let C be the centralizer of r. It is shown that either the quotient ring of C is a finitely-generated division algebra of Gelfand-Kirillov dimension 1 or R is PI.

Central Armendariz rings.

Agayev, Nazim, Güngöroğlu, Gonca, Harmanci, Abdullah, Halicioğlu, S. (2011)

Bulletin of the Malaysian Mathematical Sciences Society. Second Series

Centralizers on prime and semiprime rings

Joso Vukman (1997)

Commentationes Mathematicae Universitatis Carolinae

The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let R be a noncommutative prime ring of characteristic different from two and let S and T be left centralizers on R . Suppose that [ S ( x ) , T ( x ) ] S ( x ) + S ( x ) [ S ( x ) , T ( x ) ] = 0 is fulfilled for all x R . If S 0 ( T ...

Centralizers on semiprime rings

Joso Vukman (2001)

Commentationes Mathematicae Universitatis Carolinae

The main result: Let R be a 2 -torsion free semiprime ring and let T : R R be an additive mapping. Suppose that T ( x y x ) = x T ( y ) x holds for all x , y R . In this case T is a centralizer.

Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective

Xinfeng Liang, Feng Wei, Ajda Fošner (2019)

Czechoslovak Mathematical Journal

Let be a commutative ring, 𝒢 be a generalized matrix algebra over with weakly loyal bimodule and 𝒵 ( 𝒢 ) be the center of 𝒢 . Suppose that 𝔮 : 𝒢 × 𝒢 𝒢 is an -bilinear mapping and that 𝔗 𝔮 : 𝒢 𝒢 is a trace of 𝔮 . The aim of this article is to describe the form of 𝔗 𝔮 satisfying the centralizing condition [ 𝔗 𝔮 ( x ) , x ] 𝒵 ( 𝒢 ) (and commuting condition [ 𝔗 𝔮 ( x ) , x ] = 0 ) for all x 𝒢 . More precisely, we will revisit the question of when the centralizing trace (and commuting trace) 𝔗 𝔮 has the so-called proper form from a new perspective. Using the aforementioned...

Certain additive decompositions in a noncommutative ring

Huanyin Chen, Marjan Sheibani, Rahman Bahmani (2022)

Czechoslovak Mathematical Journal

We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a 2 × 2 matrix A over a projective-free ring R is strongly J -clean if and only if A J ( M 2 ( R ) ) , or I 2 - A J ( M 2 ( R ) ) , or A is similar to 0 λ 1 μ , where λ J ( R ) , μ 1 + J ( R ) , and the equation x 2 - x μ - λ = 0 has a root in J ( R ) and a root in 1 + J ( R ) . We further prove that f ( x ) R [ [ x ] ] is strongly J -clean if f ( 0 ) R be optimally J -clean.

Certain decompositions of matrices over Abelian rings

Nahid Ashrafi, Marjan Sheibani, Huanyin Chen (2017)

Czechoslovak Mathematical Journal

A ring R is (weakly) nil clean provided that every element in R is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let R be abelian, and let n . We prove that M n ( R ) is nil clean if and only if R / J ( R ) is Boolean and M n ( J ( R ) ) is nil. Furthermore, we prove that R is weakly nil clean if and only if R is periodic; R / J ( R ) is 3 , B or 3 B where B is a Boolean ring, and that M n ( R ) is weakly nil clean if and only if M n ( R ) is nil clean for all n 2 .

Currently displaying 21 – 40 of 250