Identities of orthodox semigroup rings.
We show that a homomorphism of algebras is a categorical epimorphism if and only if all induced morphisms of the associated module varieties are immersions. This enables us to classify all minimal singularities in the subvarieties of modules from homogeneous standard tubes.
The incidence coalgebras of interval finite posets I and their comodules are studied by means of the reduced Euler integral quadratic form , where K is an algebraically closed field. It is shown that for any such coalgebra the tameness of the category of finite-dimensional left -modules is equivalent to the tameness of the category of finitely copresented left -modules. Hence, the tame-wild dichotomy for the coalgebras is deduced. Moreover, we prove that for an interval finite ̃ *ₘ-free...
Almost completely decomposable groups with a critical typeset of type and a -primary regulator quotient are studied. It is shown that there are, depending on the exponent of the regulator quotient , either no indecomposables if ; only six near isomorphism types of indecomposables if ; and indecomposables of arbitrary large rank if .
We describe the structure of all indecomposable modules in standard coils of the Auslander-Reiten quivers of finite-dimensional algebras over an algebraically closed field. We prove that the supports of such modules are obtained from algebras with sincere standard stable tubes by adding braids of two linear quivers. As an application we obtain a complete classification of non-directing indecomposable modules over all strongly simply connected algebras of polynomial growth.
We study the possible dimension vectors of indecomposable parabolic bundles on the projective line, and use our answer to solve the problem of characterizing those collections of conjugacy classes of n×n matrices for which one can find matrices in their closures whose product is equal to the identity matrix. Both answers depend on the root system of a Kac-Moody Lie algebra. Our proofs use Ringel’s theory of tubular algebras, work of Mihai on the existence of logarithmic connections, the Riemann-Hilbert...
We describe all those indecomposable primarily comultiplication modules with finite-dimensional top over pullback of two Dedekind domains. We extend the definition and results given by R. Ebrahimi Atani and S. Ebrahimi Atani [Algebra Discrete Math. 2009] to a more general primarily comultiplication modules case.
We discuss the problem of classification of indecomposable representations for extended Dynkin quivers of type 𝔼̃₈, with a fixed orientation. We describe a method for an explicit determination of all indecomposable preprojective and preinjective representations for those quivers over an arbitrary field and for all indecomposable representations in case the field is algebraically closed. This method uses tilting theory and results about indecomposable modules for a canonical algebra of type (5,3,2)...