Left global dimensions and inverse polynomial modules.
We define a notion of left section in an Auslander-Reiten component, by weakening one of the axioms for sections. We derive a generalisation of the Liu-Skowroński criterion for tilted algebras, then apply our results to describe the Auslander-Reiten components lying in the left part of an artin algebra.
We study a connection between left-right projective bimodules and stable equivalences of Morita type for finite-dimensional associative algebras over a field. Some properties of the category of all finite-dimensional left-right projective bimodules for self-injective algebras are also given.
Bimodules over triangular Nakayama algebras that give stable equivalences of Morita type are studied here. As a consequence one obtains that every stable equivalence of Morita type between triangular Nakayama algebras is a Morita equivalence.
On étudie dans cet article les notions d’algèbre à homotopie près pour une structure définie par deux opérations et . Ayant déterminé la structure des algèbres et des algèbres, on généralise cette construction et on définit la stucture des -algèbres à homotopie près. Etant donnée une structure d’algèbre commutative et de Lie différentielle graduée pour deux décalages des degrés donnés par et , on donnera une construction explicite de l’algèbre à homotopie près associée et on précisera...
J’exposerai ici quelques résultats récents (obtenus en collaboration avec C. Consani [3], [4], [5], [6]) qui portent sur le cas limite de la “caractéristique ”. Le but principal est de montrer que l’espace des classes d’adèles d’un corps global, qui jusqu’à présent n’a été considéré que comme un espace (non-commutatif), admet en fait une structure algébrique naturelle. Nous verrons également que la construction de l’anneau de Witt d’un anneau de caractéristique admet un analogue en caractéristique...
Let K be a field and Γ a finite quiver without oriented cycles. Let Λ := K(Γ,ρ) be the quotient algebra of the path algebra KΓ by the ideal generated by ρ, and let 𝒟(Λ) be the dual extension of Λ. We prove that each Lie derivation of 𝒟(Λ) is of the standard form.
Let M be a 2 and 3-torsion free prime Γ-ring, d a nonzero derivation on M and U a nonzero Lie ideal of M. In this paper it is proved that U is a central Lie ideal of M if d satisfies one of the following (i) d(U)⊂ Z, (ii) d(U)⊂ U and d²(U)=0, (iii) d(U)⊂ U, d²(U)⊂ Z.
Let K be a field of characteristic p > 2 and let G be a group. Necessary and sufficient conditions are obtained so that the group algebra KG is strongly Lie solvable of derived length at most 3. It is also shown that these conditions are equivalent to KG Lie solvable of derived length 3 in characteristic p ≥ 7.