On the Jacobson radical of graded rings.
All commutative semigroups are described such that the Jacobson radical is homogeneous in each ring graded by .
For any non-torsion group with identity , we construct a strongly -graded ring such that the Jacobson radical is locally nilpotent, but is not locally nilpotent. This answers a question posed by Puczyłowski.
Let be a semisimple complex algebraic group and its flag variety. Let and let be its enveloping algebra. Let be a Cartan subalgebra of . For , let be the corresponding minimal primitive ideal, let , and let be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the -algebras . When is regular, Hodges has shown that . In this case is generated by the classes corresponding to...
Let Λ be a tubular algebra over an arbitrary base field. We study the Grothendieck group , endowed with the Euler form, and its automorphism group on a purely K-theoretical level as in [7]. Our results serve as tools for classifying the separating tubular families of tubular algebras as in the example [5] and for determining the automorphism group of the derived category of Λ.
Let S be a semiring whose additive reduct (S,+) is an inverse semigroup. The relations θ and k, induced by tr and ker (resp.), are congruences on the lattice C(S) of all congruences on S. For ρ ∈ C(S), we have introduced four congruences and on S and showed that and . Different properties of ρθ and ρκ have been considered here. A congruence ρ on S is a Clifford congruence if and only if is a distributive lattice congruence and is a skew-ring congruence on S. If η (σ) is the least distributive...
Given a number field Galois over the rational field , and a positive integer prime to the class number of , there exists an abelian extension (of exponent ) such that the -torsion subgroup of the Brauer group of is equal to the relative Brauer group of .