Displaying 41 – 60 of 566

Showing per page

On additive functions for stable translation quivers

Grzegorz Bobiński (1999)

Colloquium Mathematicae

The aim of this note is to give a complete description of the positive additive functions for the stable nonperiodic translation quivers with finitely many orbits. In particular, we show that all positive additive functions on the stable translation quivers of Euclidean type (respectively, of wild type) are periodic, and hence bounded (respectively, are unbounded, and hence nonperiodic).

On algebraic closures.

R. Raphael (1992)

Publicacions Matemàtiques

This is a description of some different approaches which have been taken to the problem of generalizing the algebraic closure of a field. Work surveyed is by Enoch and Hochster (commutative algebra), Raphael (categories and rings of quotients), Borho (the polynomial approach), and Carson (logic).Later work and applications are given.

On algebras of generalized Latin squares

František Katrnoška (2011)

Mathematica Bohemica

The main result of this paper is the introduction of a notion of a generalized R -Latin square, which includes as a special case the standard Latin square, as well as the magic square, and also the double stochastic matrix. Further, the algebra of all generalized Latin squares over a commutative ring with identity is investigated. Moreover, some remarkable examples are added.

On artin algebras with almost all indecomposable modules of projective or injective dimension at most one

Andrzej Skowroński (2003)

Open Mathematics

Let A be an artin algebra over a commutative artin ring R and ind A the category of indecomposable finitely generated right A-modules. Denote A to be the full subcategory of ind A formed by the modules X whose all predecessors in ind A have projective dimension at most one, and by A the full subcategory of ind A formed by the modules X whose all successors in ind A have injective dimension at most one. Recently, two classes of artin algebras A with A A co-finite in ind A, quasi-tilted algebras and...

On Auslander–Reiten components for quasitilted algebras

Flávio Coelho, Andrzej Skowroński (1996)

Fundamenta Mathematicae

An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver Γ A of a quasitilted algebra A.

On Auslander-Reiten translates in functorially finite subcategories and applications

K. Erdmann, D. Madsen, V. Miemietz (2010)

Colloquium Mathematicae

We consider functorially finite subcategories in module categories over Artin algebras. One main result provides a method, in the setup of bounded derived categories, to compute approximations and the end terms of relative Auslander-Reiten sequences. We also prove an Auslander-Reiten formula for the setting of functorially finite subcategories. Furthermore, we study the category of modules filtered by standard modules for certain quasi-hereditary algebras and we classify precisely when this category...

Currently displaying 41 – 60 of 566