Regular and normal quantales
A weak basis of a module is a generating set of the module minimal with respect to inclusion. A module is said to be regularly weakly based provided that each of its generating sets contains a weak basis. We study (1) rings over which all modules are regularly weakly based, refining results of Nashier and Nichols, and (2) regularly weakly based modules over Dedekind domains.
Sia l'insieme degli interi non negativi e l'anello degli interi. Sia l'anello delle matrici su che hanno solo un numero finito di cifre non nulle in ogni linea ed in ogni colonna. Sia il sottoanello generato da e , dove (rispettivamente ) è ottenuto dalla matrice identità muovendo gli 1 una posizione a destra (rispettivamente in giù). Sia pure il sottoanello di generato da e . Infine sia il sottoanello delle matrici di che hanno solo un numero finito di cifre non nulle....
Let A be a finite-dimensional algebra which is quasi-hereditary with respect to the poset (Λ, ≤), with standard modules Δ(λ) for λ ∈ Λ. Let ℱ(Δ) be the category of A-modules which have filtrations where the quotients are standard modules. We determine some inductive results on the relative Auslander-Reiten quiver of ℱ(Δ).
We study finitely generated bigraded Buchsbaum modules over a standard bigraded polynomial ring with respect to one of the irrelevant bigraded ideals. The regularity and the Hilbert function of graded components of local cohomology at the finiteness dimension level are considered.
Recently Rim and Teply [11] found a necessary condition for the existence of -torsionfree covers with respect to a given hereditary torsion theory for the category -mod. This condition uses the class of -exact modules; i.e. the -torsionfree modules for which every its -torsionfree homomorphic image is -injective. In this note we shall show that the existence of -torsionfree covers implies the existence of -exact covers, and we shall investigate some sufficient conditions for the converse....
We introduce the notion of a relative hermitian Morita context between torsion triples and we show how these induce equivalences between suitable quotient categories of left and right modules.Due to the lack of involutive bimodules, the induced Morita equivalences are not necessarily hermitian, however.