Family algebras.
Let be a ring. A left -module is called an FC-module if is a flat right -module. In this paper, some homological properties of FC-modules are given. Let be a nonnegative integer and the class of all left -modules such that the flat dimension of is less than or equal to . It is shown that is a complete cotorsion pair and if is a ring such that and is closed under direct sums, then is a perfect cotorsion pair. In particular, some known results are obtained as corollaries....
We provide a technique to find a cluster-tilting object having a given cluster-tilted algebra as endomorphism ring in the finite type case.
We give an automata-theoretic description of the algebraic closure of the rational function field over a finite field , generalizing a result of Christol. The description occurs within the Hahn-Mal’cev-Neumann field of “generalized power series” over . In passing, we obtain a characterization of well-ordered sets of rational numbers whose base expansions are generated by a finite automaton, and exhibit some techniques for computing in the algebraic closure; these include an adaptation to positive...
We characterize C*-algebras and C*-modules such that every maximal right ideal (resp. right submodule) is algebraically finitely generated. In particular, C*-algebras satisfy the Dales-Żelazko conjecture.
Let K be a field of characteristic p > 0, K* the multiplicative group of K and a finite group, where is a p-group and B is a p’-group. Denote by a twisted group algebra of G over K with a 2-cocycle λ ∈ Z²(G,K*). We give necessary and sufficient conditions for G to be of OTP projective K-representation type, in the sense that there exists a cocycle λ ∈ Z²(G,K*) such that every indecomposable -module is isomorphic to the outer tensor product V W of an indecomposable -module V and a simple...
Let S be a commutative complete discrete valuation domain of positive characteristic p, S* the unit group of S, Ω a subgroup of S* and a finite group, where is a p-group and B is a p’-group. Denote by the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). For Ω satisfying a specific condition, we give necessary and sufficient conditions for G to be of OTP projective (S,Ω)-representation type, in the sense that there exists a cocycle λ ∈ Z²(G,Ω) such that every indecomposable...