A functor between categories of regular modules for wild hereditary algebras.
Sullivan associated a uniquely determined to any simply connected simplicial complex . This algebra (called minimal model) contains the total (and exactly) rational homotopy information of the space . In case is the total space of a principal -bundle, ( is a compact connected Lie-group) we associate a -equivariant model , which is a collection of “-homotopic” ’s with -action. will, in general, be different from the Sullivan’s minimal model of the space . contains the total rational...
Applying the classical work of Nakayama [Ann. of Math. 40 (1939)], we exhibit a general form of non-Frobenius self-injective finite-dimensional algebras over a field.
We find examples of polynomials whose eigenring is a central simple algebra over the field .
There is a classical result known as Baer’s Lemma that states that an -module is injective if it is injective for . This means that if a map from a submodule of , that is, from a left ideal of to can always be extended to , then a map to from a submodule of any -module can be extended to ; in other words, is injective. In this paper, we generalize this result to the category consisting of the representations of an infinite line quiver. This generalization of Baer’s Lemma...
Eichler's trace formula for traces of the Brandt-Eichler matrices is proved for arbitrary totally definite orders in central simple algebras of prime index over global fields. A formula for type numbers of such orders is proved as an application.
We first propose a generalization of the notion of Mathieu subspaces of associative algebras , which was introduced recently in [Zhao W., Generalizations of the image conjecture and the Mathieu conjecture, J. Pure Appl. Algebra, 2010, 214(7), 1200–1216] and [Zhao W., Mathieu subspaces of associative algebras], to -modules . The newly introduced notion in a certain sense also generalizes the notion of submodules. Related with this new notion, we also introduce the sets σ(N) and τ(N) of stable...
Let be a left and right Noetherian ring and a semidualizing -bimodule. We introduce a transpose of an -module with respect to which unifies the Auslander transpose and Huang’s transpose, see Z. Y. Huang, On a generalization of the Auslander-Bridger transpose, Comm. Algebra 27 (1999), 5791–5812, in the two-sided Noetherian setting, and use to develop further the generalized Gorenstein dimension with respect to . Especially, we generalize the Auslander-Bridger formula to the generalized...
In this paper, a new kind of graph on a commutative ring is introduced and investigated. Small intersection graph of a ring , denoted by , is a graph with all non-small proper ideals of as vertices and two distinct vertices and are adjacent if and only if is not small in . In this article, some interrelation between the graph theoretic properties of this graph and some algebraic properties of rings are studied. We investigated the basic properties of the small intersection graph as diameter,...