Displaying 1081 – 1100 of 3966

Showing per page

Generalized quivers associated to reductive groups

Harm Derksen, Jerzy Weyman (2002)

Colloquium Mathematicae

We generalize the definition of quiver representation to arbitrary reductive groups. The classical definition corresponds to the general linear group. We also show that for classical groups our definition gives symplectic and orthogonal representations of quivers with involution inverting the direction of arrows.

Generalized reverse derivations and commutativity of prime rings

Shuliang Huang (2019)

Communications in Mathematics

Let R be a prime ring with center Z ( R ) and I a nonzero right ideal of R . Suppose that R admits a generalized reverse derivation ( F , d ) such that d ( Z ( R ) ) 0 . In the present paper, we shall prove that if one of the following conditions holds: (i) F ( x y ) ± x y Z ( R ) , (ii) F ( [ x , y ] ) ± [ F ( x ) , y ] Z ( R ) , (iii) F ( [ x , y ] ) ± [ F ( x ) , F ( y ) ] Z ( R ) , (iv) F ( x y ) ± F ( x ) F ( y ) Z ( R ) , (v) [ F ( x ) , y ] ± [ x , F ( y ) ] Z ( R ) , (vi) F ( x ) y ± x F ( y ) Z ( R ) for all x , y I , then R is commutative.

Generators of existence varieties of regular rings and complemented Arguesian lattices

Christian Herrmann, Marina Semenova (2010)

Open Mathematics

We proved in an earlier work that any existence variety of regular algebras is generated by its simple unital Artinian members, while any existence variety of Arguesian sectionally complemented lattices is generated by its simple members of finite length. A characterization of the class of simple unital Artinian members [members of finite length, respectively] of such varieties is given in the present paper.

Generic extensions of nilpotent k[T]-modules, monoids of partitions and constant terms of Hall polynomials

Justyna Kosakowska (2012)

Colloquium Mathematicae

We prove that the monoid of generic extensions of finite-dimensional nilpotent k[T]-modules is isomorphic to the monoid of partitions (with addition of partitions). This gives us a simple method for computing generic extensions, by addition of partitions. Moreover we give a combinatorial algorithm that calculates the constant terms of classical Hall polynomials.

Generic representations of orthogonal groups: projective functors in the category q u a d

Christine Vespa (2008)

Fundamenta Mathematicae

We continue the study of the category of functors q u a d , associated to ₂-vector spaces equipped with a nondegenerate quadratic form, initiated in J. Pure Appl. Algebra 212 (2008) and Algebr. Geom. Topology 7 (2007). We define a filtration of the standard projective objects in q u a d ; this refines to give a decomposition into indecomposable factors of the first two standard projective objects in q u a d : P H and P H . As an application of these two decompositions, we give a complete description of the polynomial functors...

Geometry of noncommutative algebras

Eivind Eriksen, Arvid Siqveland (2011)

Banach Center Publications

There has been several attempts to generalize commutative algebraic geometry to the noncommutative situation. Localizations with good properties rarely exist for noncommutative algebras, and this makes a direct generalization difficult. Our point of view, following Laudal, is that the points of the noncommutative geometry should be represented as simple modules, and that noncommutative deformations should be used to obtain a suitable localization in the noncommutative situation. Let A be an algebra...

Currently displaying 1081 – 1100 of 3966