Jordan automorphisms, Jordan derivations of generalized triangular matrix algebra.
We give a sufficient condition under which any Jordan automorphism of a triangular algebra is either an automorphism or an anti-automorphism.
Motivated by Problem 2 in [2], Jordan *-derivation pairs and n-Jordan *-mappings are studied. From the results on these mappings, an affirmative answer to Problem 2 in [2] is given when E = F in (1) or when 𝓐 is unital. For the general case, we prove that every Jordan *-derivation pair is automatically real-linear. Furthermore, a characterization of a non-normal prime *-ring under some mild assumptions and a representation theorem for quasi-quadratic functionals are provided.
In this paper we investigate -prime near-rings with derivations satisfying certain differential identities on Jordan ideals, and we provide examples to show that the assumed restrictions cannot be relaxed.
We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.
In this article we study the interplay between algebro-geometric notions related to -points and structural features of the stable Auslander-Reiten quiver of a finite group scheme. We show that -points give rise to a number of new invariants of the AR-quiver on one hand, and exploit combinatorial properties of AR-components to obtain information on -points on the other. Special attention is given to components containing Carlson modules, constantly supported modules, and endo-trivial modules.
For an arbitrary infinite cardinal , we define classes of -cslender and -tslender modules as well as related classes of -hmodules and initiate a study of these classes.
A description of the commutator of a normal subcategory of the fusion category of representation Rep A of a semisimple Hopf algebra A is given. Formulae for the kernels of representations of Drinfeld doubles D(G) of finite groups G are presented. It is shown that all these kernels are normal Hopf subalgebras.