Non-commutative reduction rings.
We give conditions for the skew group ring S * G to be strongly separable and H-separable over the ring S. In particular we show that the H-separability is equivalent to S being central Galois extension. We also look into the H-separability of the ring S over the fixed subring R under a faithful action of a group G. We show that such a chain: S * G H-separable over S and S H-separable over R cannot occur, and that the centralizer of R in S is an Azumaya algebra in the presence of a central element...
Let be an infinite-dimensional complex Hilbert space and be a standard operator algebra on which is closed under the adjoint operation. It is shown that every nonlinear -Lie higher derivation of is automatically an additive higher derivation on . Moreover, is an inner -higher derivation.
Let be an arbitrary parabolic subalgebra of a simple associative -algebra. The ideals of are determined completely; Each ideal of is shown to be generated by one element; Every non-linear invertible map on that preserves ideals is described in an explicit formula.
In this paper we prove that every bijection preserving Lie products from a triangular algebra onto a normal triangular algebra is additive modulo centre. As an application, we described the form of bijections preserving Lie products on nest algebras and block upper triangular matrix algebras.
Given a group G of k-linear automorphisms of a locally bounded k-category R, the problem of existence and construction of non-orbicular indecomposable R/G-modules is studied. For a suitable finite sequence B of G-atoms with a common stabilizer H, a representation embedding , which yields large families of non-orbicular indecomposable R/G-modules, is constructed (Theorem 3.1). It is proved that if a G-atom B with infinite cyclic stabilizer admits a non-trivial left Kan extension B̃ with the same...
We prove a stronger form, , of a consistency result, , due to Eklof and Shelah. concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that does not hold for left perfect rings.
We shall introduce the class of strongly cancellative multiplicative monoids which contains the class of all totally ordered cancellative monoids and it is contained in the class of all cancellative monoids. If is a strongly cancellative monoid such that for each and if is a ring such that for each , then the class of all non-singular left -modules is a cover class if and only if the class of all non-singular left -modules is a cover class. These two conditions are also equivalent whenever...
Let be a multiplicative monoid. If is a non-singular ring such that the class of all non-singular -modules is a cover class, then the class of all non-singular -modules is a cover class. These two conditions are equivalent whenever is a well-ordered cancellative monoid such that for all elements with there is such that . For a totally ordered cancellative monoid the equalities and hold, being Goldie’s torsion theory.
One of the results in my previous paper On torsionfree classes which are not precover classes, preprint, Corollary 3, states that for every hereditary torsion theory for the category -mod with , being Goldie’s torsion theory, the class of all -torsionfree modules forms a (pre)cover class if and only if is of finite type. The purpose of this note is to show that all members of the countable set of rings have the property that the class of all non-singular left modules forms a (pre)cover...