Centrally splitting radicals
Let be an associative ring and be a left -module. We introduce the concept of the incidence module of a locally finite partially ordered set over . We study the properties of and give the necessary and sufficient conditions for the incidence module to be an IN-module, -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of -modules is closed under direct product and upper triangular matrix modules.
First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication -modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.
The purpose of this paper is to further the study of countably thick modules via weak injectivity. Among others, for some classes of modules in we study when direct sums of modules from satisfies a property in . In particular, we get characterization of locally countably thick modules, a generalization of locally q.f.d. modules.