Selfinjective algebras of polynomial growth.
Page 1 Next
Andrzej Skowronski (1989)
Mathematische Annalen
Otto Bretscher, C. Läser (1981)
Manuscripta mathematica
Carl Faith (1992)
Publicacions Matemàtiques
This paper owes its origins to Pere Menal and his work on Von Neumann Regular (= VNR) rings, especially his work listed in the bibliography on when the tensor product K = A ⊗K B of two algebras over a field k are right self-injective (= SI) or VNR. Pere showed that then A and B both enjoy the same property, SI or VNR, and furthermore that either A and B are algebraic algebras over k (see [M]). This is connected with a lemma in the proof of the Hilbert Nullstellensatz, namely a finite ring extension...
Fieldhouse, David J. (1985)
International Journal of Mathematics and Mathematical Sciences
P. C. Eklof (2008)
Publicacions Matemàtiques
Gabriella D'Este (1992)
Forum mathematicum
Charles Lanski (1973)
Mathematische Annalen
Feigelstock, Shalom (1987)
Portugaliae mathematica
K.W. Roggenkamp (1972)
Journal für die reine und angewandte Mathematik
Klaus W. Roggenkamp (1972)
Journal für die reine und angewandte Mathematik
Howard E. Bell, A.A. Klein (1994)
Mathematica Scandinavica
Dinh van Huynh (1986)
Mathematische Zeitschrift
Bell, Howard E., Klein, Abraham A. (2010)
Beiträge zur Algebra und Geometrie
Jacques Fort (1966/1967)
Séminaire Dubreil. Algèbre et théorie des nombres
Jan Žemlička, Jan Trlifaj (1997)
Rendiconti del Seminario Matematico della Università di Padova
Huanyin Chen (2008)
Czechoslovak Mathematical Journal
An exchange ring is strongly separative provided that for all finitely generated projective right -modules and , . We prove that an exchange ring is strongly separative if and only if for any corner of , implies that there exist such that and if and only if for any corner of , implies that there exists a right invertible matrix . The dual assertions are also proved.
Vedadi, M.R. (2009)
Acta Mathematica Universitatis Comenianae. New Series
Libuše Tesková (2000)
Discussiones Mathematicae - General Algebra and Applications
In this paper we introduce the class of strongly rectifiable and S-homogeneous modules. We study basic properties of these modules, of their pure and refined submodules, of Hill's modules and we also prove an extension of the second Prüfer's theorem.
B.M. Schein, L. Li (1985)
Semigroup forum
Abu-Khuzam, Hazar, Yaqub, Adil (2006)
International Journal of Mathematics and Mathematical Sciences
Page 1 Next