Eine Verallgemeinerung des Lemmas von Nakayama.
Let be an exchange ring in which all regular elements are one-sided unit-regular. Then every regular element in is the sum of an idempotent and a one-sided unit. Furthermore, we extend this result to exchange rings satisfying related comparability.
In this paper we investigate the related comparability over exchange rings. It is shown that an exchange ring R satisfies the related comparability if and only if for any regular x C R, there exists a related unit w C R and a group G in R such that wx C G.
We characterize exchange rings having stable range one. An exchange ring has stable range one if and only if for any regular , there exist an and a such that and if and only if for any regular , there exist and such that if and only if for any , .
By a rotation in a Euclidean space V of even dimension we mean an orthogonal linear operator on V which is an orthogonal direct sum of rotations in 2-dimensional linear subspaces of V by a common angle α ∈ [0,π]. We present a criterion for the existence of a 2-dimensional subspace of V which is invariant under a given pair of rotations, in terms of the vanishing of a determinant associated with that pair. This criterion is constructive, whenever it is satisfied. It is also used to prove that every...
An -module is said to be an extending module if every closed submodule of is a direct summand. In this paper we introduce and investigate the concept of a type 2 -extending module, where is a hereditary torsion theory on -. An -module is called type 2 -extending if every type 2 -closed submodule of is a direct summand of . If is the torsion theory on - corresponding to an idempotent ideal of and is a type 2 -extending -module, then the question of whether or not is...